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A quasi-wavelet numerical method (QWNM) is introduced for solving the convection—diffusion equation (CDE).
The results manifest that the calculated bandwidth has an extremum. When the bandwidth takes the value of the
extremum, the accuracy of the solution for the CDE by using the QWNM is relatively high, and better than that by

using the up-wind scheme. Under the condition of stochastic boundary disturbances of different amplitudes, the results

of the QWNM are a little worse than those of the up-wind scheme when the integral time is longer. However, when

stochastic boundary disturbances of equal amplitudes occur, the solutions of the equation by using the QWNM and the

up-wind scheme can be identical if the bandwidth takes an integer greater than or equal to 20. When the parameter is

stochastically disturbed, the root-mean-square error of the quasi-wavelet solution of the equation is smaller than that
of the up-wind scheme solution if the bandwidth is 10. When the initial values are stochastically disturbed and the

bandwidth equals 10, the accuracy of the quasi-wavelet solution is relatively high, and better than that of the up-wind

scheme solution.
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1. Introduction

The convection—diffusion equation (CDE) is the
simplest model of the Navier-Stokes equation, which
describes the viscid incompressible flow, and is widely
used in the scientific—technological fields, such as fluid
mechanics, atmospheric dynamics, environmental pro-
tection, and chemical engineering: for example in re-
lation to the motion and thermal conductivity of fluid
(regulation of motion of ground water, petroleum, and
natural gas), the transfer and diffusion of pollutants,
electrochemical reactions (electrochemical processes of
cathodic protection), and the diffusion and convection
of the constituent concentrations of various chemical
substances, etc. Therefore, study of the numerical so-

lution of the CDE is of great practical importance.[! 3!

At present, the studies on the numerical solution

of the CDE have obtained many achievements: the

lattice Boltzmann method has succeeded in numeri-
cally solving the Navier-Stokes equation of a fluid;[
Liu et al®® have put forward a lattice Boltzmann
method for solving the two-dimensional CDE, thus
taking one step closer to the solution of practical prob-
lems. Feng et all®~11) had great success in using the
retrospective multi-time-level integral scheme to solve
the differential equations numerically. Later, based
on the self-memory dynamics, Lu et al('? derived the
self-memory retrospective time integral scheme of a
single parameter for the CDE. In recent years, due to
the good local characteristics of the wavelet function,
it has been successfully used in many fields; in partic-
ular, the discrete numerical algorithm of the wavelet
has been widely used in the studies on many problems.
Wang and Weil'3] constructed a QWNM based on the

wavelet function to solve the Burgers equation, and
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the solution successfully describes the rapid change
character of the function. Tang et all'¥l obtained the
numerical solution of the MKdV equation using the
QWNM, and compared the solution with the analyti-
cal one, showing that the numerical solution has a high
accuracy. We have solved numerically the CDE under
the conditions of stochastically disturbed boundary
and parameters by using the central explicit scheme,
the improved central explicit scheme, the exponential
type scheme, and the up-wind scheme, respectively,
and examined the performances of four schemes. The
results showed that the up-wind scheme is more ac-
curate than the other three, and less affected by the
boundary and parameter disturbances.[15:16]

On the basis of the previous works, we introduce
the QWNM to solve the CDE, compare the solution
with that obtained by using the up-wind scheme, in-
vestigate the effect of boundary and parameter dis-
turbances on the solution obtained using the QWNM,
and further discuss the range of computational band-
width value W for the quasi-scale function expansion.
The results indicate that W has an extremum, and
when the value of W equals the extremum, the so-
lution of the equation by using the QWNM possesses
higher accuracy, and is better than that of the up-wind
scheme, thus greatly reducing the computational ef-
forts in large numerical prediction models. Especially,
the QWNM is of great importance in large spectral
models for saving computation time, and thus of merit

in application.
2. Wavelet and quasi-wavelet

Since the last century, the wavelet has been
an outcome of the important disciplines of modern
harmonic analysis including function space, gener-
alized function, Fourier analysis, and abstract har-
monic analysis, and has been called a “mathematical

» [17] The major feature of a wavelet is its

microscope
good local characteristics, i.e. its capability of fully
highlighting some aspects of research problems after
being transformed; therefore the wavelet is success-
fully used in many fields. The wavelet, as so called,
is intuitively referred to as the shortest and simplest
oscillations which can be observed by people. Mathe-

matically, the wavelet is a function family,
—1/2 z—b
hap (@) =la| *h{=—) (b€ Ra#0), (1)

obtained by the translation and stretch/shrink of such
a function h(z) in the function space L?(R) so that

h(z) satisfies
/l;h(a:)da: =0. (2)

Therefore, the wavelet is sometimes also called the
wavelet generating function. Equation (2) is a permis-
sible condition showing that function h(z) possesses a
wave character. The waves of wavelet generating func-
tion h(z) deviate from the horizontal axis only in the
vicinity of the origin; when it is off the origin, the
value of h(z) decays rapidly to zero, and the entire
wave approaches the horizontal. This is the basic rea-
son why the function h(z) is called “wavelet”. For an

arbitrary parameter pair (a,b), obviously we have

/ h(ap)(z)dz = 0.
R

However, function h(,p)(z) exhibits obvious distur-
bances only in the vicinity of z = b, and the range
of the disturbances depends completely on the varia-
tion of parameter a. When a > 1, the range is larger
than that of the original wavelet generating function
h(z), and the waveform of the wavelet becomes shorter
and thicker, and the change in the shape of the en-
tire function becomes slow; when 0 < a < 1, the
range is smaller than that of the original one, and the
waveform becomes sharper and thinner; when a > 0
and a becomes smaller and smaller, the waveform of
the wavelet gradually approaches an impulse function,
and the shape of the function changes more and more
rapidly. The regularities of change of wavelet func-
tion h(,p)(x) with the parameter pair (a,b) determine
that the wavelet function may have a good local char-
acteristic, i.e. the ability to analyse the arbitrary so-
phisticated structure of the functions and the signals
in an arbitrary assigned place. In order to further
improve the local characteristics of the wavelet func-
tion, the scale function of the wavelet can be regu-
larized. The regularized scale function is called the
quasi-scale function, the wavelet generated through

which is called the QWNM.[7]

3. Numerical computation

3.1. Construction of the difference form of the
CDE
Consider the CDE

ou ou 8%u

E+ca—mza@,x€[o,2],t>0, (3)

where a and c¢ are constants, and @ > 0. The initial

and boundary conditions of Eq.(3) in this paper are
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given as

u(z,0) =sinmz,z € [0,2]; u(0,t) =u(2,t) =0. (4)

The spatial coordinate z is homogeneously discretized.
The spatial step is taken as 2/ N, where N is the total
number of grid units in [0,2], and the coordinates of
grid points are z; = jh, j = 1,2,---,N; u; denotes
the value of unknown function v at grid x;. The time
derivative in Eq.(3) is discretized by using the fourth-

order Runge-Kutta method, and its discrete form is

Y = y; + ?(kj,l + 2k3 5 + 2k3 3 + K3 4),

(] = 1a25 ' 7N+2): (5)
where
{yj}:{ylay2ay3a"'ayN+2}:(t;UO:ula"':uN)a
(]:1a25:N+2): (6)

y=t=0, yj=uj_,=sin[r(j-2)h, (7)
kf,l = ki2 = ki3 = ki4 =1 (8)

Discretizing Eq.(3) by using the quasi-wavelet

schemel'®14 yields the following expressions of kjqs

kPo, ks, kfa (5=2,3,- -, N +1):

k2 =a Z 0D (—kh)uly ) 5

k=—w
—c Y o (—kh)uly . s, 9)
k=—w
k2, =a Z 5(2) kh)( ul gt k;+k1>
k=—w

—-c Z 5}(11,37(_"’}&) <Uj+k—2 + 5 j+k,1> , (10)

k=—w

J3_a26 <J+k 2t kJn+k2>
k=—w
—c i: 5f(bl,¢)y(—kh) <“§'L+k—2+ % ?+k,2)7(11)
k=—w
kja =a i 552 (—kh) <“§L+k—2+Atk?+k,3)
k=—w
—c Z 85 (~ < Ul oy + ALK, 3> (12)
k=—w

The superscript n in the above expressions is the time
level, and At represents the time step, t = nAt the in-
tegral time, and 0=3.2h a window parameter Ono(x)

is the regularized scale function, 5 (1‘) and 5,(120 (z)

are its first and second derivatives with respect to z,
[-W, W] is the computational band-
width, and W is an integer. The derivation of Eqgs.(4)—

respectively.

(10) and the computational formulae for the regular-
ized scale function and its first and second derivatives
can be found in Refs.[13] and [14].

The above computational process follows the be-
low order: (i) calculating the four coefficients in
Egs.(9)-(12) by using the given initial value (i.e.
Egs.(7) and (8)) or the last time level value y7'; (ii)
N + 1)

by using the iteration equation (5), and obtaining di-

calculating the value of y"+1 (G =12--

rectly y3 = yj o = 0 under the boundary condition
(4); (iil) obtaining y"+1 = u;”+21 (j=2,38,---,N+2)
from Eq.(6); (iv) by using the calculated y"+1 and
the boundary condition, repeating the above compu-
tational procedure until obtaining the required time.

The difference equation of Eq.(3) obtained using

the up-wind scheme is

alAt
+ == h2 ( ]+1 2u +u ) (13)

The of the QWNM in the

convection—diffusion equation is measured with the

performance

following root-mean-square (RMS) error:

(14)

where z = N Zl z;, and z; is the approximate solu-
=
tion of u(z) at a certain time at the s¢th grid. If the

RMS error for a method is smaller, then the method

is better as far as this index is concerned.
3.2. The solution of CDE with QWNM

Taking the CDE as an example, the range of W
in the expansion of quasi-scale function is emphati-
cally discussed, the stability of the solution of the CDE
by using QWNM is holohedrally examined under the
four circumstances: the fixed boundaries, stochastic
parameters, stochastic boundaries and stochastically
disturbed initial values, and their solutions are com-
pared with those obtained in the up-wind scheme in
the following.

In the control numerical experiment (CTL) of
fixed boundaries and parameters, the a,c, and N is

given the values 0.1, 0.05, and 200, respectively, and
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the time step takes 0.0002, and u(0)=u(N)=0.0 is
assumed. In the experiments of stochastic bound-
aries, the boundaries are disturbed by an equal-
amplitude oscillation, i.e. u(0)=u(N)=Ran(P)/10.0,
and by oscillations of different amplitudes,
u(0)=Ran(P)/10.0 and u(N)=Ran(Q)/10.0; param-
eters a and c¢ have the same values as in the CTL;
and Ran(P) and Ran(Q) are stochastic numbers be-
tween 0 and 1, and P and Q are stochastic seed (the

same is kept below). In the experiments of stochas-

i.e.

tic parameters, when parameter a takes a stochasti-

cally disturbed value a=0.05+(Ran(P)/5.0-0.1)/5.0,

RMS

RMS

parameter c takes the same value as in the CTL. While
parameter c takes a stochastically disturbed value c=
Ran (P)/5.0, parameter a takes the same value as in
the CTL; under the conditions of the above two types
of parameters, the boundary conditions are both the
same as in the CTL.

When the initial conditions are stochastically dis-
turbed, the initial values could be in the form u(z) =
sin rz; + Ran(P)/100.0,z; =i X h,i =1,2,--- ,N — 1;
the boundary conditions and parameters a,c are the

same as those in the fixed boundaries scheme.
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Fig.1. The RMS errors of the solutions of the CDE with the up-wind and the QWNM under the condition
of fixed boundary. (a) Parameters: a= 0.1, c=0.05; — Bl — denotes the RMS error curve in the up-wind

scheme, and - @ —, — A

—, — ¥ — denote the RMS error curves by using the QWNM for W equal to 10, 11,

and 20, respectively. (b) Parameters: a=0.05+(Ran(P)/5.0-0.1)/5.0, c=0.05; - @ —, — A —, — ¥ — the same
as (a) but W equal to 6, 11, and 20, respectively. (c) Parameters: a= 0.1, c=Ran (P)/5.0; the others mean

the same as those in (b). (d) Parameters: a= 0.1, c=0.05; the others mean the same as those in (b).

It can be observed from Fig.1 (a) that for W=10,
11, and 20, the evolution of RMS errors of the solu-
tions of the CDE with QWNM coincide with that of
the up-wind scheme, i.e. the curves drop rapidly at

first, and then approach the horizontal in the integral

time-period. The RMS error curve of the solution with
QWNM for W =20 is almost completely identical with
that of the solution in the up-wind scheme, and the

RMS error of the solution by using the QWNM for
W=10 is obviously smaller than that of the up-wind
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scheme. It is interesting to note that, in contrast, the
RMS error of the solution with QWNM for W=11 is
larger than that of the up-wind scheme. The solutions
with QWNM for W=12-40 (figures omitted) are also
compared with those in the up-wind scheme, and the
results show that the CDE can be well solved when
W takes these values; however, the RMS errors of the
solutions are all larger than those for W=10, and very
close to or completely identical to the RMS error of
the up-wind scheme. Furthermore, the solutions of
Eq.(3) by using the QWNM for W being an integer
greater than 20 are the same, but for W being an in-
teger smaller than 9, the RMS errors of the solution of
Eq.(3) by using the QWNM approaches infinity, and
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the solution is completely distorted.

Figures 1(b), 1(c) and 1(d) display the temporal
evolution curves of the RMS errors of the solutions of
Eq. (3) in the QWNM and the up-wind scheme when
parameters a, ¢ and the initial values are disturbed
respectively. It can be seen from the figures that for
W=6, the RMS error of the solutions of Eq.(3) by us-
ing the QWNM is the smallest, and it is almost zero
in the integral time; for W =11, the RMS error of the
solution is the largest, and greater than that of the
up-wind scheme; and for W=20, the other results of
RMS error are similar to those under the condition of

fixed boundary and parameters.
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Fig.2. The differences (R) between the RMS errors of the solutions of the CDE by using the QWNM
and the up-wind scheme, and that of the corresponding solutions in the CTL under the stochastically
disturbed conditions. — ll — means the same as in Fig.1; — @ —, — % — denote the R curves in the QWNM
for W=10,20, respectively. (a) Equally disturbed boundaries; a=0.1, ¢=0.05; (b) Unequally disturbed
boundaries; a=0.1, ¢c=0.05; (c) Stochastically disturbed parameters; a=0.05+(Ran(P)/5.0-0.1)/5.0, c=0.05;
(d) Disturbed initial values; a=0.1, ¢=0.05; u(¢) = sin 7z; + Ran(P)/100.0, z; =i X h,i =1,2,---,N — 1.

Figure 2(a) shows that the R curve of the solu-
tion of Eq.(3) by using the QWNM for W=10 con-

tinuously rises with the increase of integral time, and

the solution is strongly affected by disturbances, while
the R curve for W=20 coincides completely with that

of the up-wind scheme in the integral time period,
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and the curve rises at first and falls afterwards. It
is worth noticing that in this circumstance the RMS
error curve of the quasi-wavelet solution for W=20
still completely coincides with that of the up-wind
scheme. However, the RMS error curve of the solution
for W=10 is lower than that of the up-wind scheme be-
fore t=4.0, and afterwards it is higher than the curve
until the end of integral time (figure omitted). There-
fore, the solution of the CDE by using the QWNM
for W=10 is more affected by boundary disturbances,
while the solution is less affected for W=20.

Figure 2(b) is the time evolution of the R curves
under the condition of unequally disturbed bound-
aries. The variation trend of the R curve of the so-
lution for W=20 is similar to that of the up-wind
scheme. The curve rises rapidly at first, and then
falls slowly in the integral time period. It coincides
almost with that of the up-wind scheme before t=0.8,
and afterwards becomes always higher until the end
of the integral period. The R curve of the solution
for W =10 keeps increasing in the whole integral time
period, obviously the solution being strongly affected
by the disturbances. In this circumstance, the accu-
racy of the solution is higher than that of the solution
with the QWNM for W=20 and the up-wind scheme
before t=6.5, and in the whole integral time the accu-
racy of the solution with the up-wind scheme is slightly
higher than that of the solution by using the QWNM
for W=20 (Figure omitted).

Figure 2(c) displays the time evolution of the R
curves when parameter a is disturbed. It can be seen
that the R value of the solution by using the QWNM
for W=20 is least affected by the parameter distur-
bances, its R curve almost completely coincides with
that of the solution with the up-wind scheme, and the
R value of the solution for W=10 is most affected by
the parameter disturbances. Even so, its RMS error is
still smaller than those of the solution for W=20 and
the solution with the up-wind scheme (figure omit-
ted). The conclusions obtained from the computation
under the condition that the disturbed parameter c
are similar to those under the condition of the dis-
turbed parameter a. Because of limited space, we do
not go into details.

Figure 2(d) is the time evolution of the R curves
under the condition of disturbed initial values. The so-
lution in the up-wind scheme is not influenced. There-
fore, the solution of Eq.(3) by using the QWNM for
W =20 is more affected by initial disturbances and less

influenced for W=10. Even so, the accuracy of the so-

lution of the CDE by using the QWNM for W=10 is
relatively high, and better than that of the up-wind

scheme (figure omitted).
4. Conclusions

This paper has introduced the QWNM to solve
the CDE, and compared its computational results
with those of the up-wind scheme. It is found that
the QWNM can be used to solve the CDE satisfacto-
rily. Conclusions are summarized as follows:

(i) When using the QWNM to solve the CDE,
the calculated bandwidth W has an extremum. If the
bandwidth W takes specific values, the accuracy of the
solution of the CDE by using the QWNM is relatively
high, and better than that of the up-wind scheme.
While W takes an integer greater than or equal to 20,
the various solutions are completely the same.

(ii) Under the condition of the boundary distur-
bances of equal amplitudes, the solution of Eq.(3) by
using the QWNM is less affected for W=20, and the
fluctuation amplitude of its R curve is the same as
that of the up-wind scheme. Under the condition of
the boundary disturbances of different amplitudes, the
solutions of Eq.(3) by using up-wind scheme are least
affected. Under the boundary disturbances, the so-
lution is more influenced by using the QWNM for
W=10, and with the increase of the integral time its
accuracy gradually becomes lower than that of the up-
wind scheme and the QWNM for W=20.

(iii) Under the condition of parameter distur-
bances, the solution by using the QWNM for W =20
coincides with that of the up-wind scheme and is
most stable, while the solution for W=10 is most af-
fected, but the accuracy is still higher than that of the
QWNM for W=20 and the up-wind scheme.

(iv) Under the stochastically disturbed initial
value, the accuracy of the solution by using the
QWNM for W=10 in the CDE remains relatively high
and better than that of the up-wind scheme.

It can be seen clearly that under the condition of
parameter disturbances, although the solution by us-
ing the QWNM for W=10 is the most affected, the
accuracy remains high, which is the same as the con-
clusion for the fixed boundaries. Under the condition
of boundary disturbances, for a long integral time the
accuracy for W=10 is lower than that of the QWNM
for W=20 and the up-wind scheme. Because the so-
lution by using QWNM for W=10 is more affected by
the disturbances, in a long integral time, the numeri-

cal solution may be distorted. Therefore, in practical
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applications of the QWNM, it is necessary to properly

select the computational bandwidth W according to

different parameter, boundary and initial conditions

so as to raise the accuracy of the numerical solution

and reduce the influence of stochastic disturbances on

the numerical solution.
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